Displaying 221 – 240 of 465

Showing per page

On rich monoids

Radovan Gregor (1975)

Commentationes Mathematicae Universitatis Carolinae

On some free semigroups, generated by matrices

Piotr Słanina (2015)

Czechoslovak Mathematical Journal

Let A = 1 2 0 1 , B λ = 1 0 λ 1 . We call a complex number λ “semigroup free“ if the semigroup generated by A and B λ is free and “free” if the group generated by A and B λ is free. First families of semigroup free λ ’s were described by J. L. Brenner, A. Charnow (1978). In this paper we enlarge the set of known semigroup free λ ’s. To do it, we use a new version of “Ping-Pong Lemma” for semigroups embeddable in groups. At the end we present most of the known results related to semigroup free and free numbers in a common picture....

On the arithmetic of arithmetical congruence monoids

M. Banister, J. Chaika, S. T. Chapman, W. Meyerson (2007)

Colloquium Mathematicae

Let ℕ represent the positive integers and ℕ₀ the non-negative integers. If b ∈ ℕ and Γ is a multiplicatively closed subset of b = / b , then the set H Γ = x | x + b Γ 1 is a multiplicative submonoid of ℕ known as a congruence monoid. An arithmetical congruence monoid (or ACM) is a congruence monoid where Γ = ā consists of a single element. If H Γ is an ACM, then we represent it with the notation M(a,b) = (a + bℕ₀) ∪ 1, where a, b ∈ ℕ and a² ≡ a (mod b). A classical 1954 result of James and Niven implies that the only ACM...

On the decidability of semigroup freeness∗

Julien Cassaigne, Francois Nicolas (2012)

RAIRO - Theoretical Informatics and Applications

This paper deals with the decidability of semigroup freeness. More precisely, the freeness problem over a semigroup S is defined as: given a finite subset X ⊆ S, decide whether each element of S has at most one factorization over X. To date, the decidabilities of the following two freeness problems have been closely examined. In 1953, Sardinas and Patterson proposed a now famous algorithm for the freeness problem over the free monoids....

On the decidability of semigroup freeness

Julien Cassaigne, Francois Nicolas (2012)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

This paper deals with the decidability of semigroup freeness. More precisely, the freeness problem over a semigroup S is defined as: given a finite subset X ⊆ S, decide whether each element of S has at most one factorization over X. To date, the decidabilities of the following two freeness problems have been closely examined. In 1953, Sardinas and Patterson proposed a now famous algorithm for the freeness problem over the free monoids. In 1991, Klarner, Birget and Satterfield proved the undecidability...

On the decidability of semigroup freeness∗

Julien Cassaigne, Francois Nicolas (2012)

RAIRO - Theoretical Informatics and Applications

This paper deals with the decidability of semigroup freeness. More precisely, the freeness problem over a semigroup S is defined as: given a finite subset X ⊆ S, decide whether each element of S has at most one factorization over X. To date, the decidabilities of the following two freeness problems have been closely examined. In 1953, Sardinas and Patterson proposed a now famous algorithm for the freeness problem over the free monoids....

Currently displaying 221 – 240 of 465