Displaying 161 – 180 of 226

Showing per page

Principal ideals of finitely generated commutative monoids

José Carlos Rosales, Juan Ignacio García-García (2002)

Czechoslovak Mathematical Journal

We study the semigroups isomorphic to principal ideals of finitely generated commutative monoids. We define the concept of finite presentation for this kind of semigroups. Furthermore, we show how to obtain information on these semigroups from their presentations.

Reduced commutative monoids with two Archimedean components

J. C. Rosales, P.~A. García-Sánchez (2000)

Bollettino dell'Unione Matematica Italiana

Si studiano i monoidi commutativi ridotti con due componenti archimedee e si forniscono dei teoremi di strutture. Si presta particolare attenzione a quei monoidi che sono finitamente generati, e si danno degli algoritmi che permettono di ottenere informazioni a partire da un delle loro presentazioni.

Relative block semigroups and their arithmetical applications

Franz Halter-Koch (1992)

Commentationes Mathematicae Universitatis Carolinae

We introduce relative block semigroups as an appropriate tool for the study of certain phenomena of non-unique factorizations in residue classes. Thereby the main interest lies in rings of integers of algebraic number fields, where certain asymptotic results are obtained.

Semigroup-theoretical characterizations of arithmetical invariants with applications to numerical monoids and Krull monoids

Víctor Blanco, Pedro A. García-Sánchez, Alfred Geroldinger (2010)

Actes des rencontres du CIRM

Arithmetical invariants—such as sets of lengths, catenary and tame degrees—describe the non-uniqueness of factorizations in atomic monoids.We study these arithmetical invariants by the monoid of relations and by presentations of the involved monoids. The abstract results will be applied to numerical monoids and to Krull monoids.

Currently displaying 161 – 180 of 226