On some properties of the syntactic semigroup of a very pure subsemigroup
This paper deals with the decidability of semigroup freeness. More precisely, the freeness problem over a semigroup S is defined as: given a finite subset X ⊆ S, decide whether each element of S has at most one factorization over X. To date, the decidabilities of the following two freeness problems have been closely examined. In 1953, Sardinas and Patterson proposed a now famous algorithm for the freeness problem over the free monoids....
This paper deals with the decidability of semigroup freeness. More precisely, the freeness problem over a semigroup S is defined as: given a finite subset X ⊆ S, decide whether each element of S has at most one factorization over X. To date, the decidabilities of the following two freeness problems have been closely examined. In 1953, Sardinas and Patterson proposed a now famous algorithm for the freeness problem over the free monoids. In 1991, Klarner, Birget and Satterfield proved the undecidability...
This paper deals with the decidability of semigroup freeness. More precisely, the freeness problem over a semigroup S is defined as: given a finite subset X ⊆ S, decide whether each element of S has at most one factorization over X. To date, the decidabilities of the following two freeness problems have been closely examined. In 1953, Sardinas and Patterson proposed a now famous algorithm for the freeness problem over the free monoids....
A language L ⊆A* is literally idempotent in case that ua2v ∈ L if and only if uav ∈ L, for each u,v ∈ A*, a ∈ A. Varieties of literally idempotent languages result naturally by taking all literally idempotent languages in a classical (positive) variety or by considering a certain closure operator on classes of languages. We initiate the systematic study of such varieties. Various classes of literally idempotent languages can be characterized using syntactic methods. A starting example is the...
Cet article est probablement le dernier texte de mathématiques écrit en vue de sa publication par M. P. Schützenberger, décédé en juillet 1996. Il était offert par son auteur en hommage à André Lentin, à l'occasion d'un colloque tenu en l'honneur de celui-ci le 23 février 1996 ; M. P. Schützenberger, déjà très malade, n'avait pu participer à cette rencontre, mais avait tenu à rédiger, non sans souffrances, une contribution scientifique qui témoignât de son amitié pour A. Lentin. Lorsque je lui dis...