Factorisations des monoïdes libres, bascules, et algèbres de Lie libres
Let H be a Krull monoid with infinite class group and such that each divisor class of H contains a prime divisor. We show that for each finite set L of integers ≥2 there exists some h ∈ H such that the following are equivalent: (i) h has a representation for some irreducible elements , (ii) k ∈ L.
For a non-unit a of an atomic monoid H we call the set of lengths of a. Let H be a Krull monoid with infinite divisor class group such that each divisor class is the sum of a bounded number of prime divisor classes of H. We investigate factorization properties of H and show that H has sets of lengths containing large gaps. Finally we apply this result to finitely generated algebras over perfect fields with infinite divisor class group.
A monoid S 1 obtained by adjoining a unit element to a 2-testable semigroup S is said to be 2-testable. It is shown that a 2-testable monoid S 1 is either inherently non-finitely based or hereditarily finitely based, depending on whether or not the variety generated by the semigroup S contains the Brandt semigroup of order five. Consequently, it is decidable in quadratic time if a finite 2-testable monoid is finitely based.