Joins and meets of congruences on a regular semigroup.
Joint subnormality of a family of composition operators on L²-space is characterized by means of positive definiteness of appropriate Radon-Nikodym derivatives. Next, simplified positive definiteness conditions guaranteeing joint subnormality of a C₀-semigroup of composition operators are supplied. Finally, the Radon-Nikodym derivatives associated to a jointly subnormal C₀-semigroup of composition operators are shown to be the Laplace transforms of probability measures (modulo a C₀-group of scalars)...
In the previous paper, we have characterized (joint) subnormality of a C₀-semigroup of composition operators on L²-space by positive definiteness of the Radon-Nikodym derivatives attached to it at each rational point. In the present paper, we show that in the case of C₀-groups of composition operators on L²-space the positive definiteness requirement can be replaced by a kind of consistency condition which seems to be simpler to work with. It turns out that the consistency condition also characterizes...