Laterally commutative heaps and TST-spaces.
A laterally commutative heap can be defined on a given set iff there is the structure of a TST-space on this set.
A laterally commutative heap can be defined on a given set iff there is the structure of a TST-space on this set.
On any involuted semigroup , define the ternary operation for all . The resulting ternary algebra satisfies the para-associativity law , which defines the variety of semiheaps. Important subvarieties include generalised heaps, which arise from inverse semigroups, and heaps, which arise from groups. We consider the intermediate variety of near heaps, defined by the additional laws and . Every Clifford semigroup is a near heap when viewed as a semiheap, and we show that the Clifford semigroup...
In this paper we study some interesting properties of regular ternary semigroups, completely regular ternary semigroups, intra-regular ternary semigroups and characterize them by using various ideals of ternary semigroups.
We introduce the notion of a Lie semiheap as a smooth manifold equipped with a para-associative ternary product. For a particular class of Lie semiheaps we establish the existence of left-invariant vector fields. Furthermore, we show how such manifolds are related to Lie groups and establish the analogue of principal bundles in this ternary setting. In particular, we generalise the well-known ‘heapification’ functor to the ambience of Lie groups and principal bundles.