Fundamental Relations in Hyperstructures
Thomas Vougiouklis (1999)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Corsini, Piergiulio, Cristea, Irina (2005)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
R. Dacić (1969)
Matematički Vesnik
Xiao Long Xin (2006)
Discussiones Mathematicae - General Algebra and Applications
We introduce the concept of a hyper BCI-algebra which is a generalization of a BCI-algebra, and investigate some related properties. Moreover we introduce a hyper BCI-ideal, weak hyper BCI-ideal, strong hyper BCI-ideal and reflexive hyper BCI-ideal in hyper BCI-algebras, and give some relations among these hyper BCI-ideals. Finally we discuss the relations between hyper BCI-algebras and hyper groups, and between hyper BCI-algebras and hyper -groups.
J. Mittas, Ch. G. Massouros (1989)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Mario De Salvo, Domenico Freni, Giovanni Lo Faro (2008)
Matematički Vesnik
Piergiulio Corsini (2003)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Michael Voit, Peter Hermann (1995)
Forum mathematicum
Davvaz, Bijan, Dudek, Wiesław A. (2006)
International Journal of Mathematics and Mathematical Sciences
Davvaz, B. (2006)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Davvaz, B. (2010)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Jan Chvalina, Ludmila Chvalinová (2000)
Archivum Mathematicum
Velrajan, Muthusamy, Asokkumar, Arjunan (2010)
International Journal of Mathematics and Mathematical Sciences
Thomas Vougiouklis (1990)
Annales scientifiques de l'Université de Clermont. Mathématiques
Mario De Salvo, Domenico Freni, Giovanni Lo Faro (1996)
Annales mathématiques Blaise Pascal
M. De Salvo (1999)
Acta Universitatis Carolinae. Mathematica et Physica
Massouros, Ch.G. (1991)
International Journal of Mathematics and Mathematical Sciences
Thomas N. Vougiouklis, L. Konguetsof (1987)
Acta Universitatis Carolinae. Mathematica et Physica
Bijan Davvaz (2002)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Qiumei Wang, Jianming Zhan (2016)
Open Mathematics
In this paper, we firstly introduce a special congruence relation U(μ, t) induced by a fuzzy ideal μ in a semigroup S. Then we define the lower and upper approximations based on a fuzzy ideal in semigroups. We can establish rough semigroups, rough ideals, rough prime ideals, rough fuzzy semigroups, rough fuzzy ideals and rough fuzzy prime ideals according to the definitions of rough sets and rough fuzzy sets. Furthermore, we shall consider the relationships among semigroups and rough semigroups,...