The derived Lie pseudoalgebra of an anchored module.
A symplectic Lie group is a Lie group with a left-invariant symplectic form. Its Lie algebra structure is that of a quasi-Frobenius Lie algebra. In this note, we identify the groupoid analogue of a symplectic Lie group. We call the aforementioned structure a -symplectic Lie groupoid; the “" is motivated by the fact that each target fiber of a -symplectic Lie groupoid is a symplectic manifold. For a Lie groupoid , we show that there is a one-to-one correspondence between quasi-Frobenius Lie algebroid...
We introduce the modular class of a Poisson map. We look at several examples and we use the modular classes of Poisson maps to study the behavior of the modular class of a Poisson manifold under different kinds of reduction. We also discuss their symplectic groupoid version, which lives in groupoid cohomology.