Correction to the paper “The Bohr compactification, modulo a metrizable subgroup” (Fund. Math. 143 (1993), 119–136)
We present a ZFC construction of a non-meager filter which fails to be countable dense homogeneous. This answers a question of Hernández-Gutiérrez and Hrušák. The method of the proof also allows us to obtain for any n ∈ ω ∪ {∞} an n-dimensional metrizable Baire topological group which is strongly locally homogeneous but not countable dense homogeneous.
We give combinatorial characterizations of IP rich sets (IP sets that remain IP upon removal of any set of zero upper Banach density) and D sets (members of idempotent ultrafilters, all of whose members have positive upper Banach density) in ℤ. We then show that the family of IP rich sets strictly contains the family of D sets.