A characterization of a class of semigroups.
We construct a Hausdorff topological group such that is a precalibre of (hence, has countable cellularity), all countable subsets of are closed and -embedded in , but is not -factorizable. This solves Problem 8.6.3 from the book “Topological Groups and Related Structures" (2008) in the negative.
We prove that the Baire Category Theorem is equivalent to the following: Let G be a topological groupoid such that the unit space is a complete metric space, and there is a countable cover of G by neighbourhood bisections. If G is effective, then G is topologically principal.