Fee Local Semigroup Constructions.
Page 1 Next
Jimmie D. Lawson (1996)
Monatshefte für Mathematik
J.D. Lawson (1986/1987)
Semigroup forum
T. Papazyan (1990)
Semigroup forum
Roman Frič, Fabio Zanolin (1986)
Czechoslovak Mathematical Journal
K.H. Hofmann, A.M. Skryago (1984)
Semigroup forum
S.D. Hippisley-Cox (1992)
Semigroup forum
Macho-Stadler, M. (2000)
Zapiski Nauchnykh Seminarov POMI
K.H. Hofmann, W.A.F. Ruppert (1989)
Semigroup forum
Ronald Brown, Osman Mucuk (1996)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
David M. Evans, Todor Tsankov (2016)
Fundamenta Mathematicae
We show that if G is a non-archimedean, Roelcke precompact Polish group, then G has Kazhdan's property (T). Moreover, if G has a smallest open subgroup of finite index, then G has a finite Kazhdan set. Examples of such G include automorphism groups of countable ω-categorical structures, that is, the closed, oligomorphic permutation groups on a countable set. The proof uses work of the second author on the unitary representations of such groups, together with a separation result for infinite permutation...
N. Hindman, J. Pym (1984)
Semigroup forum
Amha Tume Lisan (1988)
Semigroup forum
do Rocio, Osvaldo Germano, Santana, Alexandre J. (2004)
Portugaliae Mathematica. Nova Série
Michael Megrelishvili, Menachem Shlossberg (2013)
Commentationes Mathematicae Universitatis Carolinae
We study free topological groups defined over uniform spaces in some subclasses of the class of non-archimedean groups. Our descriptions of the corresponding topologies show that for metrizable uniformities the corresponding free balanced, free abelian and free Boolean groups are also metrizable. Graev type ultra-metrics determine the corresponding free topologies. Such results are in a striking contrast with free balanced and free abelian topological groups cases (in standard varieties). Another...
Edward T. Ordman (1974)
Colloquium Mathematicae
Edward T. Ordman (1974)
Colloquium Mathematicae
Martha O. Bertman (1974)
Semigroup forum
K.H. Hofmann (1995)
Semigroup forum
Piotr Stachura (2005)
Fundamenta Mathematicae
It is shown, using geometric methods, that there is a C*-algebraic quantum group related to any double Lie group (also known as a matched pair of Lie groups or a bicrossproduct Lie group). An algebra underlying this quantum group is the algebra of a differential groupoid naturally associated with the double Lie group.
W. Grossman (1979)
Semigroup forum
Page 1 Next