Displaying 81 – 100 of 925

Showing per page

An application of Lie groupoids to a rigidity problem of 2-step nilmanifolds

Hamid-Reza Fanaï, Atefeh Hasan-Zadeh (2019)

Mathematica Bohemica

We study a problem of isometric compact 2-step nilmanifolds M / Γ using some information on their geodesic flows, where M is a simply connected 2-step nilpotent Lie group with a left invariant metric and Γ is a cocompact discrete subgroup of isometries of M . Among various works concerning this problem, we consider the algebraic aspect of it. In fact, isometry groups of simply connected Riemannian manifolds can be characterized in a purely algebraic way, namely by normalizers. So, suitable factorization...

An introduction to loopoids

Janusz Grabowski (2016)

Commentationes Mathematicae Universitatis Carolinae

We discuss a concept of loopoid as a non-associative generalization of Brandt groupoid. We introduce and study also an interesting class of more general objects which we call semiloopoids. A differential version of loopoids is intended as a framework for Lagrangian discrete mechanics.

Analytic Baire spaces

A. J. Ostaszewski (2012)

Fundamenta Mathematicae

We generalize to the non-separable context a theorem of Levi characterizing Baire analytic spaces. This allows us to prove a joint-continuity result for non-separable normed groups, previously known only in the separable context.

Bol loop actions

Larissa V. Sbitneva (2000)

Commentationes Mathematicae Universitatis Carolinae

The notions of left Bol and Bol-Bruck actions are introduced. A purely algebraic analogue of a Nono family (Lie triple family), the so called Sabinin-Nono family, is given. It is shown that any Sabinin-Nono family is a left Bol-Bruck action. Finally it is proved that any local Nono family is a local left Bol-Bruck action. On general matters see [L.V. Sabinin 91, 99].

Currently displaying 81 – 100 of 925