Saturation auf kompakten Gruppen und kompakten symmetrischen Räumen.
On étudie diverses convergences des sommes de Riesz des fonctions de puissance pième sommable sur un groupe de Lie compact. On montre que , où est la dimension du groupe, est un indice critique pour la classe . On donne également un théorème de multiplicateurs qui redonne le résultat classique de Marcinkiewicz pour le tore. On établit enfin un lien entre les multiplicateurs des groupes de Lie compacts et certains multiplicateurs de .
Let (G,X) be a transformation group, where X is a locally compact Hausdorff space and G is a compact group. We investigate the stable rank and the real rank of the transformation group C*-algebra C₀(X)⋊ G. Explicit formulae are given in the case where X and G are second countable and X is locally of finite G-orbit type. As a consequence, we calculate the ranks of the group C*-algebra C*(ℝⁿ ⋊ G), where G is a connected closed subgroup of SO(n) acting on ℝⁿ by rotation.