Previous Page 2

Displaying 21 – 37 of 37

Showing per page

A solution of an open problem concerning Lagrangian mean-type mappings

Dorota Głazowska (2011)

Open Mathematics

The problem of invariance of the geometric mean in the class of Lagrangian means was considered in [Głazowska D., Matkowski J., An invariance of geometric mean with respect to Lagrangian means, J. Math. Anal. Appl., 2007, 331(2), 1187–1199], where some necessary conditions for the generators of Lagrangian means have been established. The question if all necessary conditions are also sufficient remained open. In this paper we solve this problem.

Affine and convex functions with respect to the logarithmic mean

Janusz Matkowski (2003)

Colloquium Mathematicae

The class of all functions f:(0,∞) → (0,∞) which are continuous at least at one point and affine with respect to the logarithmic mean is determined. Some related results concerning the functions convex with respect to the logarithmic mean are presented.

Algebraic and topological structures on the set of mean functions and generalization of the AGM mean

Bakir Farhi (2013)

Colloquium Mathematicae

We present new structures and results on the set of mean functions on a given symmetric domain in ℝ². First, we construct on a structure of abelian group in which the neutral element is the arithmetic mean; then we study some symmetries in that group. Next, we construct on a structure of metric space under which is the closed ball with center the arithmetic mean and radius 1/2. We show in particular that the geometric and harmonic means lie on the boundary of . Finally, we give two theorems...

Currently displaying 21 – 37 of 37

Previous Page 2