On the homogeneous functions with two parameters and its monotonicity.
There are many relations involving the geometric means and power means for positive -vectors . Some of them assume the form of inequalities involving parameters. There then is the question of sharpness, which is quite difficult in general. In this paper we are concerned with inequalities of the form and with parameters and We obtain a necessary and sufficient condition for the former inequality, and a sharp condition for the latter. Several applications of our results are also demonstrated....
We provide a set of optimal estimates of the form (1-μ)/𝓐(x,y) + μ/ℳ (x,y) ≤ 1/ℬ(x,y) ≤ (1-ν)/𝓐(x,y) + ν/ℳ (x,y) where 𝓐 < ℬ are two of the Seiffert means L,P,M,T, while ℳ is another mean greater than the two.
We present comparison theorems for the weighted quasi-arithmetic means and for weighted Bajraktarević means without supposing in advance that the weights are the same.