Eine Funktionalgleichung für operatorwertige Funktionen.
Let ℒ be a δ-lattice in a set X, and let ν be a measure on a sub-σ-algebra of σ(ℒ). It is shown that ν extends to an ℒ-regular measure on σ(ℒ) provided ν*|ℒ is σ-smooth at ∅ and ν*(L) = inf ν*(U)|X ∖ U ∈ ℒ, Usupset L for all L ∈ ℒ. Moreover, a Choquet type representation theorem is proved for the set of all such extensions.
It has been an open question since 1997 whether, and under what assumptions on the underlying space, extreme topological measures are dense in the set of all topological measures on the space. The present paper answers this question. The main result implies that extreme topological measures are dense on a variety of spaces, including spheres, balls and projective planes.
Subadditivity of capacities is defined initially on the compact sets and need not extend to all sets. This paper explores to what extent subadditivity holds. It presents some incidental results that are valid for all subadditive capacities. The main result states that for all hull-additive capacities (a class that contains the strongly subadditive capacities) there is countable subadditivity on a class at least as large as the universally measurable sets (so larger than the analytic sets).
Nous introduisons une notion de multimesure de Radon s-compacte, à valeurs convexes fermées bornées, afin de généraliser et d’unifier des résultats établis, pour des multimesures de Radon à valeurs faiblement compactes, par A. Costé, R. Pallu De La Barrière, K. Siggini, D. S. Thiam. Nous présentons l’intégration par rapport à de telles multimesures de Radon ; et démontrons un théorème de correspondance biunivoque, entre les multimesures faibles monotones s-compactes et les multimesures de Radon...