On weakly* conditionally compact dynamical systems
In this paper we prove the following results. First, we show the existence of Wiener-Wintner dynamical system with continuous singular spectrum in the orthocomplement of their respective Kronecker factors. The second result states that if , large enough, is a Wiener-Wintner function then, for all , there exists a set of full measure for which the series converges uniformly with respect to .
Nous reprenons la construction des bases orthonormées d'ondelettes à partir des filtres miroirs en quadrature tel qu'elle apparaît dans [4]. Nous montrons que leur régularité est liée à une mesure invariante pour la transformation ω → 2ω mod-2π. Cette méthode permet d'obtenir le facteur exact qui relie asymptotiquement la régularité des ondelettes constriutes dans [4] à la taille de leur support.