Obtainment of the norm in Bergman spaces.
We give several definitions of the pluricomplex Green function and show their equivalence.
Let A denote the class of normalized analytic functions in the unit disc U = z: |z| < 1. The author obtains fixed values of δ and ϱ (δ ≈ 0.308390864..., ϱ ≈ 0.0903572...) such that the integral transforms F and G defined by and are starlike (univalent) in U, whenever f ∈ A and g ∈ A satisfy Ref’(z) > -δ and Re g’(z) > -ϱ respectively in U.
2000 Mathematics Subject Classification: 30C25, 30C45.Let D denote the open unit disc and f:D→[`C] be meromorphic and injective in D. We further assume that f has a simple pole at the point p О (0,1) and is normalized by f(0) = 0 and f′(0) = 1. In particular, we are concerned with f that map D onto a domain whose complement with respect to [`C] is convex. Because of the shape of f(D) these functions will be called concave univalent functions with pole p and the family of these functions is denoted...