Radii of p-valence of certain analytic functions of order with negative coefficients
For γ ∈ ℂ such that |γ| < π/2 and 0 ≤ β < 1, let denote the class of all analytic functions P in the unit disk with P(0) = 1 and in . For any fixed z₀ ∈ and λ ∈ ̅, we shall determine the region of variability for when P ranges over the class As a consequence, we present the region of variability for some subclasses of univalent functions. We also graphically illustrate the region of variability for several sets of parameters.
For μ ∈ ℂ such that Re μ > 0 let denote the class of all non-vanishing analytic functions f in the unit disk with f(0) = 1 and in . For any fixed z₀ in the unit disk, a ∈ ℂ with |a| ≤ 1 and λ ∈ ̅, we shall determine the region of variability V(z₀,λ) for log f(z₀) when f ranges over the class . In the final section we graphically illustrate the region of variability for several sets of parameters.