Skip to main content (access key 's'), Skip to navigation (access key 'n'), Accessibility information (access key '0')
EuDML - The European Digital Mathematics Library

Login | Register | (Why Register?)

  • Home
  • Advanced Search
  • Browse by Subject
  • Browse by Journals
  • Refs Lookup
  • Subjects
  • 30-XX Functions of a complex variable
  • 30Cxx Geometric function theory
  • 30C70 Extremal problems for conformal and quasiconformal mappings, variational methods

30Cxx Geometric function theory

  • 30C10 Polynomials
  • 30C15 Zeros of polynomials, rational functions, and other analytic functions (e.g. zeros of functions with bounded Dirichlet integral)
  • 30C20 Conformal mappings of special domains
  • 30C25 Covering theorems in conformal mapping theory
  • 30C30 Numerical methods in conformal mapping theory
  • 30C35 General theory of conformal mappings
  • 30C40 Kernel functions and applications
  • 30C45 Special classes of univalent and multivalent functions (starlike, convex, bounded rotation, etc.)
  • 30C50 Coefficient problems for univalent and multivalent functions
  • 30C55 General theory of univalent and multivalent functions
  • 30C62 Quasiconformal mappings in the plane
  • 30C65 Quasiconformal mappings in 𝐑 n , other generalizations
  • 30C70 Extremal problems for conformal and quasiconformal mappings, variational methods
  • 30C75 Extremal problems for conformal and quasiconformal mappings, other methods
  • 30C80 Maximum principle; Schwarz's lemma, Lindelöf principle, analogues and generalizations; subordination
  • 30C85 Capacity and harmonic measure in the complex plane
  • 30C99 None of the above, but in this section
  • Items

All a b c d e f g h i j k l m n o p q r s t u v w x y z Other

Page 1

Displaying 1 – 2 of 2

Showing per page

Variations of Robin capacity and applications.

Nasyrov, S.R. (2008)

Sibirskij Matematicheskij Zhurnal

Verzerrungsaussagen bei quasikonformen Abbildungen mit ortsabhängiger Dilationsbeschränkung und ein Extremalprinzip der Elektrostatik in inhomogenen Medien.

Reiner Kühnau (1978)

Commentarii mathematici Helvetici

Currently displaying 1 – 2 of 2

Page 1

EuDML
  • About EuDML initiative
  • Feedback
  •  version 2.1.7