Displaying 2241 – 2260 of 2728

Showing per page

Univalent σ -harmonic mappings : applications to composites

Giovanni Alessandrini, Vincenzo Nesi (2002)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is part of a larger project initiated with [2]. The final aim of the present paper is to give bounds for the homogenized (or effective) conductivity in two dimensional linear conductivity. The main focus is therefore the periodic setting. We prove new variational principles that are shown to be of interest in finding bounds on the homogenized conductivity. Our results unify previous approaches by the second author and make transparent the central role of quasiconformal mappings in all...

Univalent σ-harmonic mappings: applications to composites

Giovanni Alessandrini, Vincenzo Nesi (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is part of a larger project initiated with [2]. The final aim of the present paper is to give bounds for the homogenized (or effective) conductivity in two dimensional linear conductivity. The main focus is therefore the periodic setting. We prove new variational principles that are shown to be of interest in finding bounds on the homogenized conductivity. Our results unify previous approaches by the second author and make transparent the central role of quasiconformal mappings in all...

[unknown]

П.И. Сижук (1975)

Sibirskij matematiceskij zurnal

Unrectifiable 1-sets have vanishing analytic capacity.

Guy David (1998)

Revista Matemática Iberoamericana

We complete the proof of a conjecture of Vitushkin that says that if E is a compact set in the complex plane with finite 1-dimensional Hausdorff measure, then E has vanishing analytic capacity (i.e., all bounded anlytic functions on the complement of E are constant) if and only if E is purely unrectifiable (i.e., the intersection of E with any curve of finite length has zero 1-dimensional Hausdorff measure). As in a previous paper with P. Mattila, the proof relies on a rectifiability criterion using...

Variability regions of close-to-convex functions

Takao Kato, Toshiyuki Sugawa, Li-Mei Wang (2014)

Annales Polonici Mathematici

M. Biernacki gave in 1936 concrete forms of the variability regions of z/f(z) and zf'(z)/f(z) of close-to-convex functions f for a fixed z with |z|<1. The forms are, however, not necessarily convenient to determine the shape of the full variability region of zf'(z)/f(z) over all close-to-convex functions f and all points z with |z|<1. We propose a couple of other forms of the variability regions and see that the full variability region of zf'(z)/f(z) is indeed the complex plane minus the origin....

Variation of quasiconformal mappings on lines

Leonid V. Kovalev, Jani Onninen (2009)

Studia Mathematica

We obtain improved regularity of homeomorphic solutions of the reduced Beltrami equation, as compared to the standard Beltrami equation. Such an improvement is not possible in terms of Hölder or Sobolev regularity; instead, our results concern the generalized variation of restrictions to lines. Specifically, we prove that the restriction to any line segment has finite p-variation for all p > 1 but not necessarily for p = 1.

Verification of Brannan and Clunie's conjecture for certain subclasses of bi-univalent functions

S. Sivasubramanian, R. Sivakumar, S. Kanas, Seong-A Kim (2015)

Annales Polonici Mathematici

Let σ denote the class of bi-univalent functions f, that is, both f(z) = z + a₂z² + ⋯ and its inverse f - 1 are analytic and univalent on the unit disk. We consider the classes of strongly bi-close-to-convex functions of order α and of bi-close-to-convex functions of order β, which turn out to be subclasses of σ. We obtain upper bounds for |a₂| and |a₃| for those classes. Moreover, we verify Brannan and Clunie’s conjecture |a₂| ≤ √2 for some of our classes. In addition, we obtain the Fekete-Szegö relation...

Currently displaying 2241 – 2260 of 2728