Displaying 281 – 300 of 2726

Showing per page

Analytic capacity, Calderón-Zygmund operators, and rectifiability

Guy David (1999)

Publicacions Matemàtiques

For K ⊂ C compact, we say that K has vanishing analytic capacity (or γ(K) = 0) when all bounded analytic functions on CK are constant. We would like to characterize γ(K) = 0 geometrically. Easily, γ(K) > 0 when K has Hausdorff dimension larger than 1, and γ(K) = 0 when dim(K) < 1. Thus only the case when dim(K) = 1 is interesting. So far there is no characterization of γ(K) = 0 in general, but the special case when the Hausdorff measure H1(K) is finite was recently settled. In this...

Analytic formulas for the hyperbolic distance between two contractions

Ion Suciu (1997)

Annales Polonici Mathematici

In this paper we give some analytic formulas for the hyperbolic (Harnack) distance between two contractions which permit concrete computations in several situations, including the finite-dimensional case. The main consequence of these formulas is the proof of the Schwarz-Pick Lemma. It modifies those given in [13] by the avoidance of a general Schur type formula for contractive analytic functions, more exactly by reducing the case to the more manageable situation when the function takes as values...

Application of Salagean and Ruscheweyh Operators on Univalent Holomorphic Functions with Finitely many Coefficients

Najafzadeh, Shahram (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 30C45, 30C50The purpose of the present paper is to introduce a new subclass of holomorphic univalent functions with negative and fixed finitely coefficient based on Salagean and Ruscheweyh differential operators. The various results investigated in this paper include coefficient estimates, extreme points and Radii properties.

Applications of certain linear operators in the theory of analytic functions

H. M. Srivastava (1991)

Annales Polonici Mathematici

The object of the present paper is to illustrate the usefulness, in the theory of analytic functions, of various linear operators which are defined in terms of (for example) fractional derivatives and fractional integrals, Hadamard product or convolution, and so on.

Currently displaying 281 – 300 of 2726