Analytic capacity, Calderón-Zygmund operators, and rectifiability
For K ⊂ C compact, we say that K has vanishing analytic capacity (or γ(K) = 0) when all bounded analytic functions on CK are constant. We would like to characterize γ(K) = 0 geometrically. Easily, γ(K) > 0 when K has Hausdorff dimension larger than 1, and γ(K) = 0 when dim(K) < 1. Thus only the case when dim(K) = 1 is interesting. So far there is no characterization of γ(K) = 0 in general, but the special case when the Hausdorff measure H1(K) is finite was recently settled. In this...