The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Under certain mild analytic assumptions one obtains a lower bound, essentially of order , for the number of zeros and poles of a Dirichlet series in a disk of radius . A more precise result is also obtained under more restrictive assumptions but still applying to a large class of Dirichlet series.
This paper is devoted to studying the growth and oscillation of solutions and their derivatives of higher order non-homogeneous linear differential equations with finite order meromorphic coefficients. Illustrative examples are also treated.
We investigate the exponent of convergence of the zero-sequence of solutions of the differential equation
, (1)
where , P₁(z),P₂(z),P₃(z) are polynomials of degree n ≥ 1, Q₁(z),Q₂(z),Q₃(z), (j=1,..., k-1) are entire functions of order less than n, and k ≥ 2.
Currently displaying 1 –
9 of
9