The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
MSC 2010: 33E12, 30A10, 30D15, 30E15We consider some families of 3-index generalizations of the classical Mittag-Le²er functions and study the behaviour of these functions in domains of the complex plane. First, some inequalities in the complex plane and on its compact subsets are obtained. We also prove an asymptotic formula for the case of "large" values of the indices of these functions. Similar results have also been obtained by the author for the classical Bessel functions and their Wright's...
The article puts up the problem of finding harmonic functions on a domain D, which for simplicity is a disk with the origin as a boundary point, continuous on D, and with arbitrary asymptotic harmonic expansion. To solve it, in the space Ac(D) of harmonic functions on D, continuous on D and with aymptotic harmonic expansion at 0, we define the topology Tc for which it is a Fréchet space. There we define the linear functionals which map each function to the coefficients of its asymptotic harmonic...
Currently displaying 1 –
2 of
2