Page 1 Next

Displaying 1 – 20 of 31

Showing per page

A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis

Hongfen Yuan (2017)

Czechoslovak Mathematical Journal

Using a distributional approach to integration in superspace, we investigate a Cauchy-Pompeiu integral formula in super Dunkl-Clifford analysis and several related results, such as Stokes formula, Morera's theorem and Painlevé theorem for super Dunkl-monogenic functions. These results are nice generalizations of well-known facts in complex analysis.

An integral formula of hyperbolic type for solutions of the Dirac equation on Minkowski space with initial conditions on a hyperboloid

Martin Sikora (2010)

Archivum Mathematicum

The Dirac equation for spinor-valued fields f on the Minkowski space of even dimension form a hyperbolic system of partial differential equations. In the paper, we are showing how to reconstruct the solution from initial data given on the upper sheet H + of the hyperboloid. In particular, we derive an integral formula expressing the value of f in a chosen point p as an integral over a compact cycle given by the intersection of the null cone with H + in the Minkowski space 𝕄 .

An ultrametric Nevanlinna’s second main theorem for small functions of a special type

Henna Jurvanen (2010)

Annales mathématiques Blaise Pascal

In ultrametric Nevanlinna theory, the Nevanlinna’s second main theorem for small functions has only been proved in the case of at most three small functions. In this paper, we prove a second main theorem for q small functions of a special type when the residue characteristic of the field is zero.

Analyse p -adique

Yvette Amice (1959/1960)

Séminaire Delange-Pisot-Poitou. Théorie des nombres

Currently displaying 1 – 20 of 31

Page 1 Next