Page 1

Displaying 1 – 4 of 4

Showing per page

Some Banach spaces of Dirichlet series

Maxime Bailleul, Pascal Lefèvre (2015)

Studia Mathematica

The Hardy spaces of Dirichlet series, denoted by p (p ≥ 1), have been studied by Hedenmalm et al. (1997) when p = 2 and by Bayart (2002) in the general case. In this paper we study some L p -generalizations of spaces of Dirichlet series, particularly two families of Bergman spaces, denoted p and p . Each could appear as a “natural” way to generalize the classical case of the unit disk. We recover classical properties of spaces of analytic functions: boundedness of point evaluation, embeddings between...

Stević-Sharma type operators on Fock spaces in several variables

Lijun Ma, Zicong Yang (2024)

Czechoslovak Mathematical Journal

Let ϕ be an entire self-map of N , u 0 be an entire function on N and 𝐮 = ( u 1 , , u N ) be a vector-valued entire function on N . We extend the Stević-Sharma type operator to the classcial Fock spaces, by defining an operator T u 0 , 𝐮 , ϕ as follows: - . 4 p t T u 0 , 𝐮 , ϕ f = u 0 · f ϕ + i = 1 N u i · f z i ϕ . We investigate the boundedness and compactness of T u 0 , 𝐮 , ϕ on Fock spaces. The complex symmetry and self-adjointness of T u 0 , 𝐮 , ϕ are also characterized.

Currently displaying 1 – 4 of 4

Page 1