Page 1

Displaying 1 – 10 of 10

Showing per page

On mean value properties involving a logarithm-type weight

Nikolai G. Kuznecov (2024)

Mathematica Bohemica

Two new assertions characterizing analytically disks in the Euclidean plane 2 are proved. Weighted mean value property of positive solutions to the Helmholtz and modified Helmholtz equations are used for this purpose; the weight has a logarithmic singularity. The obtained results are compared with those without weight that were found earlier.

On the integral representation of superbiharmonic functions

Ali Abkar (2007)

Czechoslovak Mathematical Journal

We consider a nonnegative superbiharmonic function w satisfying some growth condition near the boundary of the unit disk in the complex plane. We shall find an integral representation formula for w in terms of the biharmonic Green function and a multiple of the Poisson kernel. This generalizes a Riesz-type formula already found by the author for superbihamonic functions w satisfying the condition 0 w ( z ) C ( 1 - | z | ) in the unit disk. As an application we shall see that the polynomials are dense in weighted Bergman...

Currently displaying 1 – 10 of 10

Page 1