Displaying 41 – 60 of 118

Showing per page

Multifractals and projections.

Fadhila Bahroun, Imen Bhouri (2006)

Extracta Mathematicae

In this paper, we generalize the result of Hunt and Kaloshin [5] about the Lq-spectral dimensions of a measure and that of its projections. The results we obtain, allow to study an untreated case in their work and to find a relationship between the multifractal spectrum of a measure and that of its projections.

On convergence sets of divergent power series

Buma L. Fridman, Daowei Ma, Tejinder S. Neelon (2012)

Annales Polonici Mathematici

A nonlinear generalization of convergence sets of formal power series, in the sense of Abhyankar-Moh [J. Reine Angew. Math. 241 (1970)], is introduced. Given a family y = φ s ( t , x ) = s b ( x ) t + b ( x ) t ² + of analytic curves in ℂ × ℂⁿ passing through the origin, C o n v φ ( f ) of a formal power series f(y,t,x) ∈ ℂ[[y,t,x]] is defined to be the set of all s ∈ ℂ for which the power series f ( φ s ( t , x ) , t , x ) converges as a series in (t,x). We prove that for a subset E ⊂ ℂ there exists a divergent formal power series f(y,t,x) ∈ ℂ[[y,t,x]] such that E = C o n v φ ( f ) if and only if...

On discrepancy theorems with applications to approximation theory

Hans-Peter Blatt (1995)

Banach Center Publications

We give an overview on discrepancy theorems based on bounds of the logarithmic potential of signed measures. The results generalize well-known results of P. Erdős and P. Turán on the distribution of zeros of polynomials. Besides of new estimates for the zeros of orthogonal polynomials, we give further applications to approximation theory concerning the distribution of Fekete points, extreme points and zeros of polynomials of best uniform approximation.

Currently displaying 41 – 60 of 118