The Convergence of Even Degree Spline Collocation Solution for Potential Problems in Smooth Domains of the Plane.
In this paper we study and give optimal estimates for the Dirichlet problem for the biharmonic operator , on an arbitrary bounded Lipschitz domain in . We establish existence and uniqueness results when the boundary values have first derivatives in , and the normal derivative is in . The resulting solution takes the boundary values in the sense of non-tangential convergence, and the non-tangential maximal function of is shown to be in .