A note on a heat potential and the parabolic variation
A condition for solvability of an integral equation which is connected with the first boundary value problem for the heat equation is investigated. It is shown that if this condition is fulfilled then the boundary considered is -Holder. Further, some simple concrete examples are examined.
The aim of this paper is to give a convergence proof of a numerical method for the Dirichlet problem on doubly connected plane regions using the method of reflection across the exterior boundary curve (which is analytic) combined with integral equations extended over the interior boundary curve (which may be irregular with infinitely many angular points).
Consider the Newtonian potential of a homogeneous bounded body D ⊂ ℝ³ with known constant density and connected complement. If this potential equals c/|x| in a neighborhood of infinity, where c>0 is a constant, then the body is a ball. This known result is now proved by a different simple method. The method can be applied to other problems.