Inverse mean value property of harmonic functions (Corrigendum).
A 2p-times continuously differentiable complex-valued function f = u + iv in a domain D ⊆ ℂ is p-harmonic if f satisfies the p-harmonic equation , where p (≥ 1) is a positive integer and Δ represents the complex Laplacian operator. If Ω ⊂ ℂⁿ is a domain, then a function is said to be p-harmonic in Ω if each component function (i∈ 1,...,m) of is p-harmonic with respect to each variable separately. In this paper, we prove Landau and Bloch’s theorem for a class of p-harmonic mappings f from...
In this paper we present some Liouville type theorems for solutions of differential inequalities involving the φ-Laplacian. Our results, in particular, improve and generalize known results for the Laplacian and the p-Laplacian, and are new even in these cases. Phragmen-Lindeloff type results, and a weak form of the Omori-Yau maximum principle are also discussed.
Soit , ouvert de et , continue. On dit qu’une majorante surharmonique de dans est minimale si cette majorante surharmonique est harmonique dans l’ensemble (ouvert) où elle diffère de . Beaucoup de propriétés de ces fonctions sont semblables à celles des fonctions harmoniques (lesquelles correspondent à ) ; par exemple la famille entière est uniformément équicontinue dans chaque partie compacte de , relativement à la structure uniforme de . On traite le problème de Dirichlet : détermination...
Assume that u, v are conjugate harmonic functions on the unit disc of ℂ, normalized so that u(0) = v(0) = 0. Let u*, |v|* stand for the one- and two-sided Brownian maxima of u and v, respectively. The paper contains the proof of the sharp weak-type estimate ℙ(|v|* ≥ 1)≤ (1 + 1/3² + 1/5² + 1/7² + ...)/(1 - 1/3² + 1/5² - 1/7² + ...) 𝔼u*. Actually, this estimate is shown to be true in the more general setting of differentially subordinate harmonic functions defined...
A positive measurable function K on a domain D in is called a mean value density for temperatures if for all temperatures u on D̅. We construct such a density for some domains. The existence of a bounded density and a density which is bounded away from zero on D is also discussed.