Remarks on pluripolar hulls
The aim of the paper is to establish some results on pluripolar hulls and to define pluripolar hulls of certain graphs.
The aim of the paper is to establish some results on pluripolar hulls and to define pluripolar hulls of certain graphs.
The necessary and sufficient condition that a given plurisubharmonic or a subharmonic function admits the representation by the logarithmic potential (up to pluriharmonic or a harmonic term) is obtained in terms of the Radon transform. This representation is applied to the problem of representation of analytic functions by products of primary factors.
Given a compact set , for each positive integer n, let = := sup: p holomorphic polynomial, 1 ≤ deg p ≤ n. These “extremal-like” functions are essentially one-variable in nature and always increase to the “true” several-variable (Siciak) extremal function, := max[0, sup1/(deg p) log|p(z)|: p holomorphic polynomial, ]. Our main result is that if K is regular, then all of the functions are continuous; and their associated Robin functions increase to for all z outside a pluripolar set....