A C2-estimate for solutions of complex Monge-Ampère equations.
Page 1 Next
Friedmar Schulz (1984)
Journal für die reine und angewandte Mathematik
Korte, Riikka (2008)
Annales Academiae Scientiarum Fennicae. Mathematica
Popescu, Emil (2003)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Zbigniew Błocki (1992)
Annales Polonici Mathematici
We compute the constant sup : P a polynomial in , where S denotes the euclidean unit sphere in and σ its unitary surface measure.
Peter Stollmann (1995)
Mathematische Zeitschrift
Johan Thorbiörnson (1988)
Monatshefte für Mathematik
Peter Stollmann (2010)
Studia Mathematica
We show that under minimal assumptions, the intrinsic metric induced by a strongly local Dirichlet form induces a length space. The main input is a dual characterization of length spaces in terms of the property that the 1-Lipschitz functions form a sheaf.
Ragnisco, Orlando, Riglioni, Danilo (2010)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Albert Raugi (2004)
Annales de l'I.H.P. Probabilités et statistiques
Wittmann, Rainer Wittmann, Rainer (1984)
Commentationes Mathematicae Universitatis Carolinae
Göran Wanby (1978)
Mathematica Scandinavica
Watson, Neil A. (2003)
Annales Academiae Scientiarum Fennicae. Mathematica
Thomas Bloom, Norman Levenberg, Yu. Lyubarskii (2008)
Annales de l’institut Fourier
For a regular, compact, polynomially convex circled set in , we construct a sequence of pairs of homogeneous polynomials in two variables with
Angel, Omer (2000)
Electronic Communications in Probability [electronic only]
P.H. Maserick (1978)
Mathematische Annalen
Urban Cegrell (1982)
Monatshefte für Mathematik
W. Plesniak (1995)
Monatshefte für Mathematik
Rosset, Edi (1996)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Ivan Netuka (1978)
Commentationes Mathematicae Universitatis Carolinae
Rüdiger W. Braun, Reinhold Meise, B. A. Taylor (2011)
Annales de la faculté des sciences de Toulouse Mathématiques
We prove that an analytic surface in a neighborhood of the origin in satisfies the local Phragmén-Lindelöf condition at the origin if and only if satisfies the following two conditions: (1) is nearly hyperbolic; (2) for each real simple curve in and each , the (algebraic) limit variety satisfies the strong Phragmén-Lindelöf condition. These conditions are also necessary for any pure -dimensional analytic variety to satisify .
Page 1 Next