-Capacity and -Hyperbolicity of Submanifolds.
We study/construct (proper and non-proper) Morse functions f on complete Riemannian manifolds X such that the hypersurfaces f(x) = t for all −∞ < t < +∞ have positive mean curvatures at all non-critical points x ∈ X of f. We show, for instance, that if X admits no such (not necessarily proper) function, then it contains a (possibly, singular) complete (possibly, compact) minimal hypersurface of finite volume.
The aim of this paper is to give a description of the Poisson kernel and the Green function of balls in the complex hyperbolic space. The description is in terms of the hypergeometric function and unitary spherical harmonics in ℂⁿ.
In this paper, we give a sharp estimate on the dimension of the space of polynomial growth harmonic functions with fixed degree on a complete Riemannian manifold, under various assumptions.