Une propriété de la compactification de Martin d'un domaine euclidien
Si est une boule ouverte contenue dans le domaine euclidien , tout filtre sur , tendant non tangentiellement vers un point de , converge vers un point minimal dans le compactifié de Martin de . On donne une application, et une variante dans le cas plan, et on termine par un contre-exemple apportant une solution négative à un problème de R.S. Martin. L’idée générale de l’article est d’établir des variantes des inégalités de Harnack pour déterminer la frontière de Martin du domaine.