Page 1

Displaying 1 – 7 of 7

Showing per page

Singular functions on metric measure spaces.

Ilkka Holopainen, Nageswari Shanmugalingam (2002)

Collectanea Mathematica

On relatively compact domains in metric measure spaces we construct singular functions that play the role of Green functions of the p-Laplacian. We give a characterization of metric spaces that support a global version of such singular function, in terms of capacity estimates at infinity of such metric spaces. In addition, when the measure of the space is locally Q-regular, we study quasiconformal invariance property associated with the existence of global singular functions.

Some non-linear function theoretic properties of Riemannian manifolds.

Stefano Pigola, Marco Rigoli, Alberto G. Setti (2006)

Revista Matemática Iberoamericana

We study the appropriate versions of parabolicity stochastic completeness and related Liouville properties for a general class of operators which include the p-Laplace operator, and the non linear singular operators in non-diagonal form considered by J. Serrin and collaborators.

Stability and Continuity of Functions of Least Gradient

H. Hakkarainen, R. Korte, P. Lahti, N. Shanmugalingam (2015)

Analysis and Geometry in Metric Spaces

In this note we prove that on metric measure spaces, functions of least gradient, as well as local minimizers of the area functional (after modification on a set of measure zero) are continuous everywhere outside their jump sets. As a tool, we develop some stability properties of sequences of least gradient functions. We also apply these tools to prove a maximum principle for functions of least gradient that arise as solutions to a Dirichlet problem.

Currently displaying 1 – 7 of 7

Page 1