Analytic continuation and regular classes in locally convex Hausdorff spaces
The aim of this paper is to prove the theorem on invariance of domain in an arbitrary o-minimal structure. We do not make use of the methods of algebraic topology and the proof is based merely on some basic facts about cells and cell decompositions.
It will be shown that the Stone-Weierstrass theorem for Clifford-valued functions is true for the case of even dimension. It remains valid for the odd dimension if we add a stability condition by principal automorphism.
Dans la première partie, nous étudions la pseudo-convexité dans les elc et montrons que, dans le cas normé comme dans le cas non normé, les diverses notions introduites coïncident. Dans la deuxième partie, nous étudions la convexité polynomiale et prouvons des théorèmes d’approximation du type Runge ou Oka-Weil.
The aim of this paper is to establish the equivalence between the non-pluripolarity of a compact set in a complex space and the property for the dual space of the space of germs of holomorphic functions on that compact set.