Reducible functional differential equations.
We consider uniqueness for the initial value problem x' = 1 + f(x) - f(t), x(0) = 0. Several uniqueness criteria are given as well as an example of non-uniqueness.
In this paper first order linear ordinary differential equations are considered. It is shown that the Cauchy problem for these systems has a unique solution in , where denotes the Colombeau algebra.
We are concerned with the uniqueness problem for solutions to the second order ODE of the form , subject to appropriate initial conditions, under the sole assumption that is non-decreasing with respect to , for each fixed. We show that there is non-uniqueness in general; on the other hand, several types of reasonable additional assumptions make the problem uniquely solvable. The interest in this problem comes, among other, from the study of oscillations of lumped parameter systems with implicit...
We study the relation between the solutions set to a perturbed semilinear differential inclusion with nonconvex and non-Lipschitz right-hand side in a Banach space and the solutions set to the relaxed problem corresponding to the original one. We find the conditions under which the set of solutions for the relaxed problem coincides with the intersection of closures (in the space of continuous functions) of sets of δ-solutions to the original problem.
This paper is devoted to the investigation of the abstract semilinear initial value problem du/dt + A(t)u = f(t,u), u(0) = u₀, in the "parabolic" case.
In this paper, we study the existence of integrable solutions for the set-valued differential equation of fractional type , a.e. on (0,1), , αₙ ∈ (0,1), where F(t,·) is lower semicontinuous from ℝ into ℝ and F(·,·) is measurable. The corresponding single-valued problem will be considered first.