On a boundary value problem of the fourth order
The method of quasilinearization is a procedure for obtaining approximate solutions of differential equations. In this paper, this technique is applied to a differential-algebraic problem. Under some natural assumptions, monotone sequences converge quadratically to a unique solution of our problem.
This paper presents sufficient conditions for the existence of solutions to boundary-value problems of second order multi-valued differential inclusions. The existence of extremal solutions is also obtained under certain monotonicity conditions.
We consider the existence of extremal solutions to second order discontinuous implicit ordinary differential equations with discontinuous implicit boundary conditions in ordered Banach spaces. We also study the dependence of these solutions on the data, and cases when the extremal solutions are obtained as limits of successive approximations. Examples are given to demonstrate the applicability of the method developed in this paper.
In the paper the comparison method is used to prove the convergence of the Picard iterations, the Seidel iterations, as well as some modifications of these methods applied to approximate solution of systems of differential algebraic equations. The both linear and nonlinear comparison equations are emloyed.
In this paper explicit expressions for solutions of Cauchy problems and two-point boundary value problems concerned with the generalized Riccati matrix differential equation are given. These explicit expressions are computable in terms of the data and solutions of certain algebraic Riccati equations related to the problem. The interplay between the algebraic and the differential problems is used in order to obtain approximate solutions of the differential problem in terms of those of the algebraic...