Positive solutions for a singular second order boundary value problem.
We consider the existence of positive solutions of the equation , where , p > 1, subject to some singular Sturm-Liouville boundary conditions. Using the Krasnosel’skiĭ fixed point theorem for operators on cones, we prove the existence of positive solutions under some structure conditions.
We study a third order singular boundary value problem with multi-point boundary conditions. Sufficient conditions are obtained for the existence of positive solutions of the problem. Recent results in the literature are significantly extended and improved. Our analysis is mainly based on a nonlinear alternative of Leray-Schauder.