Displaying 101 – 120 of 164

Showing per page

Positive solutions for one-dimensional singular p-Laplacian boundary value problems

Huijuan Song, Jingxue Yin, Rui Huang (2012)

Annales Polonici Mathematici

We consider the existence of positive solutions of the equation 1 / λ ( t ) ( λ ( t ) φ p ( x ' ( t ) ) ) ' + μ f ( t , x ( t ) , x ' ( t ) ) = 0 , where φ p ( s ) = | s | p - 2 s , p > 1, subject to some singular Sturm-Liouville boundary conditions. Using the Krasnosel’skiĭ fixed point theorem for operators on cones, we prove the existence of positive solutions under some structure conditions.

Positive solutions for third order multi-point singular boundary value problems

John R. Graef, Lingju Kong, Bo Yang (2010)

Czechoslovak Mathematical Journal

We study a third order singular boundary value problem with multi-point boundary conditions. Sufficient conditions are obtained for the existence of positive solutions of the problem. Recent results in the literature are significantly extended and improved. Our analysis is mainly based on a nonlinear alternative of Leray-Schauder.

Currently displaying 101 – 120 of 164