Stability properties of differential-algebraic equations and Spin-stabilized discretizations.
A suitable Liapunov function is constructed for proving that the unique critical point of a non-linear system of ordinary differential equations, considered in a well determined polyhedron , is globally asymptotically stable in . The analytic problem arises from an investigation concerning a steady state in a particular macromolecular system: the visual system represented by the pigment rhodopsin in the presence of light.