On singularly perturbed ordinary differential equations with measure-valued limits
For a family of maps , d ∈ [2,∞], p ∈ [0,1]. we analyze the speed of convergence (including constants) to the globally attracting neutral fixed point p = 0. The study is motivated by a problem in the optimization of routing. The aim of this paper is twofold: (1) to extend the usage of dynamical systems to unexplored areas of algorithms and (2) to provide a toolbox for a precise analysis of the iterates near a non-degenerate neutral fixed point.
We present a Gause type predator–prey model incorporating delay due to response of prey population growth to density and gestation. The functional response of predator is assumed to be of Holling type II. In absence of prey, predator has a density dependent death rate. Sufficient criterion for uniform persistence is derived. Conditions are found out for which system undergoes a Hopf–bifurcation.
We present a Gause type predator–prey model incorporating delay due to response of prey population growth to density and gestation. The functional response of predator is assumed to be of Holling type II. In absence of prey, predator has a density dependent death rate. Sufficient criterion for uniform persistence is derived. Conditions are found out for which system undergoes a Hopf–bifurcation.
A pullback incremental attraction, a nonautonomous version of incremental stability, is introduced for nonautonomous systems that may have unbounded limiting solutions. Its characterisation by a Lyapunov function is indicated.