A class of generalized uniform asymptotic expansions.
We consider a discrete Schrödinger operator 𝒥 with Wigner-von Neumann potential not belonging to l². We find the asymptotics of orthonormal polynomials associated to 𝒥. We prove a Weyl-Titchmarsh type formula, which relates the spectral density of 𝒥 to a coefficient in the asymptotics of the orthonormal polynomials.
We provide an elementary proof of the asymptotic behavior of solutions of second order differential equations without successive approximation argument.
Asymptotic forms of solutions of half-linear ordinary differential equation are investigated under a smallness condition and some signum conditions on . When , our results reduce to well-known ones for linear ordinary differential equations.
In this paper new generalized notions are defined: -boundedness and -asymptotic equivalence, where is a complex continuous nonsingular matrix. The -asymptotic equivalence of linear differential systems and is proved when the fundamental matrix of is -bounded.
Asymptotic representations of some classes of solutions of nonautonomous ordinary differential -th order equations which somewhat are close to linear equations are established.