The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 5 of 5

Showing per page

Evolution equations in discrete and continuous time for nonexpansive operators in Banach spaces

Guillaume Vigeral (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider some discrete and continuous dynamics in a Banach space involving a non expansive operator J and a corresponding family of strictly contracting operators Φ (λ, x): = λ J( 1 - λ λ x) for λ ∈ ] 0,1] . Our motivation comes from the study of two-player zero-sum repeated games, where the value of the n-stage game (resp. the value of the λ-discounted game) satisfies the relation vn = Φ( 1 n , v n - 1 ) (resp.  v λ = Φ(λ, v λ )) where J is the Shapley operator of the game. We study the evolution equation u'(t) =...

Expansion for the superheating field in a semi-infinite film in the weak- κ limit

Pierre Del Castillo (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Dorsey, Di Bartolo and Dolgert (Di Bartolo et al., 1996; 1997) have constructed asymptotic matched solutions at order two for the half-space Ginzburg-Landau model, in the weak- κ limit. These authors deduced a formal expansion for the superheating field in powers of κ 1 2 up to order four, extending the formula by De Gennes (De Gennes, 1966) and the two terms in Parr’s formula (Parr, 1976). In this paper, we construct asymptotic matched solutions at all orders leading to a complete expansion in powers...

Expansion for the superheating field in a semi-infinite film in the weak-κ limit

Pierre Del Castillo (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Dorsey, Di Bartolo and Dolgert (Di Bartolo et al., 1996; 1997) have constructed asymptotic matched solutions at order two for the half-space Ginzburg-Landau model, in the weak-κ limit. These authors deduced a formal expansion for the superheating field in powers of κ 1 2 up to order four, extending the formula by De Gennes (De Gennes, 1966) and the two terms in Parr's formula (Parr, 1976). In this paper, we construct asymptotic matched solutions at all orders leading to a complete expansion...

Currently displaying 1 – 5 of 5

Page 1