On a Difference Scheme of Exponential Type for a Nonlinear Singular Perturbation Problem.
This paper is concerned with square integrable quasi-derivatives for any solution of a general quasi-differential equation of th order with complex coefficients , provided that all th quasi-derivatives of solutions of and all solutions of its normal adjoint are in and under suitable conditions on the function .
The limit behaviour of solutions of a singularly perturbed system is examined in the case where the fast flow need not converge to a stationary point. The topological convergence as well as information about the distribution of the values of the solutions can be determined in the case that the support of the limit invariant measure of the fast flow is an asymptotically stable attractor.
We study singularly perturbed 1D nonlinear Schrödinger equations (1.1). When has multiple critical points, (1.1) has a wide variety of positive solutions for small and the number of positive solutions increases to as . We give an estimate of the number of positive solutions whose growth order depends on the number of local maxima of . Envelope functions or equivalently adiabatic profiles of high frequency solutions play an important role in the proof.