Page 1

Displaying 1 – 5 of 5

Showing per page

Deterministic Chaos vs. Stochastic Fluctuation in an Eco-epidemic Model

P.S. Mandal, M. Banerjee (2012)

Mathematical Modelling of Natural Phenomena

An eco-epidemiological model of susceptible Tilapia fish, infected Tilapia fish and Pelicans is investigated by several author based upon the work initiated by Chattopadhyay and Bairagi (Ecol. Model., 136, 103–112, 2001). In this paper, we investigate the dynamics of the same model by considering different parameters involved with the model as bifurcation parameters in details. Considering the intrinsic growth rate of susceptible Tilapia fish as bifurcation parameter, we demonstrate the period doubling...

Differential equations driven by rough signals.

Terry J. Lyons (1998)

Revista Matemática Iberoamericana

This paper aims to provide a systematic approach to the treatment of differential equations of the typedyt = Σi fi(yt) dxti where the driving signal xt is a rough path. Such equations are very common and occur particularly frequently in probability where the driving signal might be a vector valued Brownian motion, semi-martingale or similar process.However, our approach is deterministic, is totally independent of probability and permits much rougher paths than the Brownian paths usually discussed....

Currently displaying 1 – 5 of 5

Page 1