Growth of semigroups in discrete and continuous time
We show that the growth rates of solutions of the abstract differential equations ẋ(t) = Ax(t), , and the difference equation are closely related. Assuming that A generates an exponentially stable semigroup, we show that on a general Banach space the lowest growth rate of the semigroup is O(∜t), and for it is O(∜n). The similarity in growth holds for all Banach spaces. In particular, for Hilbert spaces the best estimates are O(log(t)) and O(log(n)), respectively. Furthermore, we give conditions...