On a class of differential equations in Banach space
This paper is concerned with square integrable quasi-derivatives for any solution of a general quasi-differential equation of th order with complex coefficients , provided that all th quasi-derivatives of solutions of and all solutions of its normal adjoint are in and under suitable conditions on the function .
Using interpolation techniques we prove an optimal regularity theorem for the convolution , where is a strongly continuous semigroup in general Banach space. In the case of abstract parabolic problems – that is, when is an analytic semigroup – it lets us recover in a unified way previous regularity results. It may be applied also to some non analytic semigroups, such as the realization of the Ornstein-Uhlenbeck semigroup in , , in which case it yields new optimal regularity results in fractional...