Semigroup approach to semilinear partial functional differential equations with infinite delay.
Using a method developed by the author for an analysis of singular integral inequalities a stability theorem for semilinear parabolic PDEs is proved.
We give some results about the topological structure of solution sets of multivalued Sturm-Liouville problems in Banach spaces.
In this paper a method for solving operator differential equations of the type X' = A + BX + XD; X(0) = C0, avoiding the operator exponential function, is given. Results are applied to solve initial value problems related to Riccati type operator differential equations whose associated algebraic equation is solvable.
The paper defines and studies the Drazin inverse for a closed linear operator in a Banach space in the case that belongs to a spectral set of the spectrum of . Results are applied to extend a result of Krein on a nonhomogeneous second order differential equation in a Banach space.
This paper is concerned with systems with control whose state evolution is described by linear skew-product semiflows. The connection between uniform exponential stability of a linear skew-product semiflow and the stabilizability of the associated system is presented. The relationship between the concepts of exact controllability and complete stabilizability of general control systems is studied. Some results due to Clark, Latushkin, Montgomery-Smith, Randolph, Megan, Zabczyk and Przyluski are generalized....